Nugroho's blog.

Tuesday, December 30, 2014

Playing with FreeBSD


Got boot-only iso and managed to install it on my Parallel Desktop on my Macbook Air with Yosemite. 

Of course it just CLI.

Strange, the root shell have tab completion feature, but the normal users didn’t.

(DuckDuckGo-ing)

The answer come from 2003 and 2005 Mailing-List, :)

To enable tab completion
 
$chsh -s /bin/tcsh
 
(it didn’t enable tab completion actually , it change shell with tab completion feature :) )
We could so use
 

$chsh -s /bin/csh 

 
tcsh shell support tab completion too.

 
Another thing is, normal user can’t use sudo command (because it’s not installed, :P )
So,  install sudo first (I used pkg command instead of pkg_add)
 
#pkg install sudo 
 
 
edit /usr/local/etc/sudoers as root and visudo command (don’t edit it using regular vi editor, or ANY editor)

%visudo

add this

username ALL=(ALL) ALL

 
and life become more easier...


 
 

Monday, December 22, 2014

Compare Native Loop Time in Python with "homemade" Fortran Module

This code print d and e as result of two matrix addition, e's using python native code, d's using fortran module compiled with F2PY

The code
import numpy as np
import aravir as ar
import time

n = 1000

u = np.ones((n,n))
v = np.ones((n,n))
e = np.ones((n,n))

t = time.clock()
d = ar.add3(u,v)
tfortran= time.clock()-t

t = time.clock()
for i in range (n):
for j in range (n):
e[i,j] = u[i,j]+v[i,j]
tnative = time.clock()-t

print 'fortran ', d
print 'native', e
print 'tfortran = ', tfortran, ', tnative = ', tnative


The fortran module I imported to python
        subroutine add3(a, b, c, n)
double precision a(n,n)
double precision b(n,n)
double precision c(n,n)

integer n
cf2py intent(in) :: a,b
cf2py intent(out) :: c,d
cf2py intent(hide) :: n
do 1700 i=1, n
do 1600 j=1, n
c(i,j) = a(i,j)
$ +b(i,j)

1600 continue
1700 continue
end

save it as aravir.f and compile using
$ f2py -c aravir.f -m aravir

And here the result
$ python cobamodul.py 
fortran [[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
...,
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]]
native [[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
...,
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]]
tfortran = 0.069974 , tnative = 1.202547

The Desktop, :)


Friday, December 19, 2014

Using 'Home-Made' Fortran Binary as Python module

Python is easy to use, but it's slow, especially for loop computation. So I compute it using fortran like this

        subroutine subs(a, b, n)
double precision a(n)
double precision b(n)
integer n
cf2py intent(in) :: a
cf2py intent(out) :: b
cf2py intent(hide) :: n
! b(1) = a(1)
do 100 i=2, n
b(i) = a(i)-1
100 continue
end


save it as aravir.py and do the following command
$ f2py -c aravir.f -m aravir

To use the module on the python I use the code below
import numpy as np
import aravir as ar

a = np.linspace(0,1,100)

b = ar.subs(a)

print a
print b

:)


3D Waterwave Simulation using Python

I used Numpy  Matplotlib with Animation and 3d Plot module on my OS X Yosemite.

The code is still messy and clearly not efficient (there's slow loop here and there) but it works, :)
Here The Result
The Code
import numpy as np

n = 8;
g = 9.8;
dt = 0.02;
dx = 1.0;
dy = 1.0;

h = np.ones((n+2,n+2))
u = np.zeros((n+2,n+2))
v = np.zeros((n+2,n+2))

hx = np.zeros((n+1,n+1))
ux = np.zeros((n+1,n+1))
vx = np.zeros((n+1,n+1))

hy = np.zeros((n+1,n+1))
uy = np.zeros((n+1,n+1))
vy = np.zeros((n+1,n+1))

nsteps = 0
h[1,1] = .5;

def reflective():
h[:,0] = h[:,1]
h[:,n+1] = h[:,n]
h[0,:] = h[1,:]
h[n+1,:] = h[n,:]
u[:,0] = u[:,1]
u[:,n+1] = u[:,n]
u[0,:] = -u[1,:]
u[n+1,:] = -u[n,:]
v[:,0] = -v[:,1]
v[:,n+1] = -v[:,n]
v[0,:] = v[1,:]
v[n+1,:] = v[n,:]

def proses():
#hx = (h[1:,:]+h[:-1,:])/2-dt/(2*dx)*(u[1:,:]-u[:-1,:])
for i in range (n+1):
for j in range(n):
hx[i,j] = (h[i+1,j+1]+h[i,j+1])/2 - dt/(2*dx)*(u[i+1,j+1]-u[i,j+1])
ux[i,j] = (u[i+1,j+1]+u[i,j+1])/2- dt/(2*dx)*((pow(u[i+1,j+1],2)/h[i+1,j+1]+ g/2*pow(h[i+1,j+1],2))- (pow(u[i,j+1],2)/h[i,j+1]+ g/2*pow(h[i,j+1],2)))
vx[i,j] = (v[i+1,j+1]+v[i,j+1])/2 - dt/(2*dx)*((u[i+1,j+1]*v[i+1,j+1]/h[i+1,j+1]) - (u[i,j+1]*v[i,j+1]/h[i,j+1]))

for i in range (n):
for j in range(n+1):
hy[i,j] = (h[i+1,j+1]+h[i+1,j])/2 - dt/(2*dy)*(v[i+1,j+1]-v[i+1,j])
uy[i,j] = (u[i+1,j+1]+u[i+1,j])/2 - dt/(2*dy)*((v[i+1,j+1]*u[i+1,j+1]/h[i+1,j+1]) - (v[i+1,j]*u[i+1,j]/h[i+1,j]))
vy[i,j] = (v[i+1,j+1]+v[i+1,j])/2 - dt/(2*dy)*((pow(v[i+1,j+1],2)/h[i+1,j+1] + g/2*pow(h[i+1,j+1],2)) - (pow(v[i+1,j],2)/h[i+1,j] + g/2*pow(h[i+1,j],2)))

for i in range (1,n+1):
for j in range(1,n+1):
h[i,j] = h[i,j] - (dt/dx)*(ux[i,j-1]-ux[i-1,j-1]) - (dt/dy)*(vy[i-1,j]-vy[i-1,j-1])
u[i,j] = u[i,j] - (dt/dx)*((pow(ux[i,j-1],2)/hx[i,j-1] + g/2*pow(hx[i,j-1],2)) - (pow(ux[i-1,j-1],2)/hx[i-1,j-1] + g/2*pow(hx[i-1,j-1],2))) - (dt/dy)*((vy[i-1,j]*uy[i-1,j]/hy[i-1,j]) - (vy[i-1,j-1]*uy[i-1,j-1]/hy[i-1,j-1]))
v[i,j] = v[i,j] - (dt/dx)*((ux[i,j-1]*vx[i,j-1]/hx[i,j-1]) - (ux[i-1,j-1]*vx[i-1,j-1]/hx[i-1,j-1])) - (dt/dy)*((pow(vy[i-1,j],2)/hy[i-1,j] + g/2*pow(hy[i-1,j],2)) - (pow(vy[i-1,j-1],2)/hy[i-1,j-1] + g/2*pow(hy[i-1,j-1],2)))

#dh = dt/dt*(ux[1:,:]-ux[:-1,:])+ dt/dy*(vy[:,1:]-vy[:,:-1])
reflective()
return h,u,v
'''
for i in range (17):
#print h
proses(1)
'''

import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from mpl_toolkits.mplot3d import Axes3D
a = n
x = np.arange(n+2)
y = np.arange(n+2)
x,y = np.meshgrid(x,y)

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

def plotset():
ax.set_xlim3d(0, a)
ax.set_ylim3d(0, a)
ax.set_zlim3d(0.5,1.5)
ax.set_autoscalez_on(False)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
cset = ax.contour(x, y, h, zdir='x', offset=0 , cmap=cm.coolwarm)
cset = ax.contour(x, y, h, zdir='y', offset=n , cmap=cm.coolwarm)
cset = ax.contour(x, y, h, zdir='z', offset=.5, cmap=cm.coolwarm)

plotset()

surf = ax.plot_surface(x, y, h,rstride=1, cstride=1,cmap=cm.coolwarm,linewidth=0,antialiased=False, alpha=0.7)

fig.colorbar(surf, shrink=0.5, aspect=5)


from matplotlib import animation


def data(k,h,surf):
proses()
ax.clear()
plotset()
surf = ax.plot_surface(x, y, h,rstride=1, cstride=1,cmap=cm.coolwarm,linewidth=0,antialiased=False, alpha=0.7)
return surf,

ani = animation.FuncAnimation(fig, data, fargs=(h,surf), interval=10, blit=False)
#ani.save('air.mp4', bitrate=512)
plt.show()

and the snapshot






Thursday, December 18, 2014

3D Surface Plot Animation using Matplotlib in Python

And here's the animation
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D

def data(i, z, line):
    z = np.sin(x+y+i)
    ax.clear()
    line = ax.plot_surface(x, y, z,color= 'b')
    return line,

n = 2.*np.pi
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.linspace(0,n,100)
y = np.linspace(0,n,100)
x,y = np.meshgrid(x,y)
z = np.sin(x+y)
line = ax.plot_surface(x, y, z,color= 'b')

ani = animation.FuncAnimation(fig, data, fargs=(z, line), interval=30, blit=False)

plt.show()

The result

The snapshot



3D Surface Plot using Matplotlib in Python

It's slightly modified from before

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D

n = 2.*np.pi
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.linspace(0,n,100)
y = np.linspace(0,n,100)
x,y = np.meshgrid(x,y)
z = np.sin(x+y)
line = ax.plot_surface(x, y, z,color= 'b')

plt.show()


the result


the snapshot



Wednesday, December 17, 2014

Matplotlib Animation in Python

Here is the update from before

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

def simData():
t_max = n
dt = 1./8
k = 0.0
t = np.linspace(0,t_max,100)
while k < t_max:
x = np.sin(np.pi*t+np.pi*k)
k = k + dt
yield x, t

def simPoints(simData):
x, t = simData[0], simData[1]
line.set_data(t, x)
return line
n = 2.
fig = plt.figure()
ax = fig.add_subplot(111)
line, = ax.plot([], [], 'b')
ax.set_ylim(-1, 1)
ax.set_xlim(0, n)

ani = animation.FuncAnimation(fig, simPoints, simData, blit=False,\
interval=100, repeat=True)
plt.show()

and the result
323f (5) amp (1) android (12) apple (7) arduino (18) art (1) assembler (21) astina (4) ATTiny (23) blackberry (4) camera (3) canon (2) cerita (2) computer (106) crazyness (11) debian (1) delphi (39) diary (286) flash (8) fortran (6) freebsd (6) google apps script (8) guitar (2) HTML5 (10) IFTTT (7) Instagram (7) internet (12) iOS (5) iPad (6) iPhone (5) java (1) javascript (1) keynote (2) LaTeX (6) lazarus (1) linux (29) lion (15) mac (28) macbook air (8) macbook pro (3) macOS (1) Math (3) mathematica (1) maverick (6) mazda (4) microcontroler (35) mountain lion (2) music (37) netbook (1) nugnux (6) os x (36) php (1) Physicist (29) Picture (3) programming (189) Python (109) S2 (13) software (7) Soliloquy (125) Ubuntu (5) unix (4) Video (8) wayang (3) yosemite (3)