Nugroho's blog.

Wednesday, April 12, 2017

Newton Polynomial in Python

I wrote code for this in Delphi. This time I want to rewrite it in Python based on this wiki.

I use this set of data point
(0,0)
(1,1)
(2,4)
(4,16)
(5,25)

and I use xc=3 for the test data.

It's obvious that these sets of data points have quadratic form and f(xc) must have value of 9.




The heart of code lay on this




def n(j,xc,x):
n = 1
for i in arange(j):
n *= (xc-x[i])

return n
def a(j,l,x,y):
if j==0:
return y[0]
elif j-l==1 :
return (y[j]-y[l])/(x[j]-x[l])
else:
return (a(j,l+1,x,y)-a(j-1,l,x,y))/(x[j]-x[l])


def N(xc,x,y):
N = 0
for j in range(len(x)):
N += a(j,0,x,y)*n(j,xc,x)

return N


Look at the function a(j,l,x,y), that's recursive function to obtain Newton divided difference value.

the whole code is this
from pylab import *

def n(j,xc,x):
n = 1
for i in arange(j):
n *= (xc-x[i])

return n
def a(j,l,x,y):
if j==0:
return y[0]
elif j-l==1 :
return (y[j]-y[l])/(x[j]-x[l])
else:
return (a(j,l+1,x,y)-a(j-1,l,x,y))/(x[j]-x[l])


def N(xc,x,y):
N = 0
for j in range(len(x)):
N += a(j,0,x,y)*n(j,xc,x)

return N

x = []
y = []
#initial value
x.append(0)
x.append(1)
x.append(2)
x.append(4)
x.append(5)

y.append(0)
y.append(1)
y.append(4)
y.append(16)
y.append(25)

#for testing
xc = 3

yc = N(xc,x,y)

print ''
print xc, yc
#plot
t = linspace(-7,7,100)
u = N(t,x,y)
plot(t,u)
grid(True)
show()



.


here's the graphics


with another sets of data points, I have another result
(0,0)
(1,1)
(2,4)
(4,16)
(5,25)




Tuesday, April 11, 2017

Disorientasi


Kadang bingung sedang membaca buku @PitoyoAmrih yang mana, saking konsistennya. Banyak cerita yang ada di buku satu, menyisip di buku lainnya. Seakan empat atau lebih buku itu sebenarnya cuma satu buku yang dijilid bukan berdasarkan urutan, namun berdasarkan tema.

Saat membaca "Antareja dan Antasena", tiba-tiba serasa baca "Wisanggeni Membakar Api" saat tiba di bagian Antasena menjadi jagung.

Juga saat membaca "Pertempuran Dua Pemanah: Arjuna-Karna" serasa membaca sisipan dari (atau malah babon) dari "Kebaikan Kurawa".

Apakah itu berarti jelek? Tidak sama sekali. Ini berarti penulis memiliki satu plot besar yang dicurahkan di berbagai buku.



Eh, tentu saja memang ada plot besar bernama pakem di pewayangan,  :).

Hal yang menarik di sini, dengan berpegang pada plot besar, buku-buku Pitoyo Amrih memiliki konsistensi yang tinggi. Baca buku yang manapun tidak akan mengalami kebingungan tentang mana yang benar karena yang diceritakan bersumber dari hal yang sama. Namun ada juga detil-detil kecil yang menarik yang memang tidak ada di pakem atau (plot besar milik Pitaya Amrih sendiri), detil-detil ini membuat cerita menjadi menyenangkan karena tidak menjadi kaku karena pakem.

Banyak buku yang menjadi  kaku karena terlalu ikut pakem, atau buku yang terlalu aneh karena tidak mempedulikan pakem sama sekali (jadinya pembaca malah mengernyit sambil mikir "Arjuna kok gini?", "Samba kok gitu?" dsb )

Ohya, saya belum baca semua buku Pitoyo Amrih, dalam proses, tetapi sudah pasti jadi pengagum  beliau, :)


Disorientation

Sometimes I confused about reading the book @PitoyoAmrih, because it's too consistent. Many stories in a book, are inserted in other books. As if four or more books were actually just one book bound not by sequence, but by theme.

When reading "Antareja and Antasena", suddenly I read "Wisanggeni Membakar" when I arrived in the Antasena-became-Corn section.

Also when reading the "Pertempuran Dua Pemanah: Arjuna-Karna" it seemed that I read the insertion from (or even the baboon) of "Kebaikan Kurawa".

Does that mean bad? Not at all. This means that the author has one large plot devoted to various books.

Uh, of course there is indeed a big plot called the Pakem (Standart Plot) in Shadow Puppet story, :).

The interesting thing here is, by holding on to the big plot, Pitoyo Amrih's books have high consistency. Read any of his books. We will not experience a confusion about what is right because the story is from the same source. But there are also interesting little details that are not in the Pakem. These details make the story fun because it does not become rigid because not strict into Pakem.

Many books are stiff because they are too gripping, or books are too strange because they don't care about The Pakem at all (so the reader frowns while thinking "Why is  Arjuna like this?", " Why is Samba like that?" Etc.)

Oh yeah, I haven't read all of Pitoyo Amrih's books, it's still in the process, but I have definitely become his admirer, :)



Newton Polinomial.


Here's code for Newton's divided differences interpolation polynomial (quite mouthful huh, :) ).

The purpose of this method is to create a function (polynomial) that passes through given set of data points.




I read data point from several edit box.

procedure TForm1.Button3Click(Sender: TObject);
var i:integer;
begin
for i:=0 to n do begin
x[i]:=strToFloat(kx[i].Text);
y[i]:=strToFloat(ky[i].Text);
end;
xc:=strToFloat(kxc.Text);
yc:=fn(xc);
kyc.Text:=floatToStr(yc);
gambarNewton;
end;

.
kx and ky is tEdit created when button1 is clicked

procedure TForm1.Button1Click(Sender: TObject);
var i:integer;
begin
button2.Enabled:=true;
button3.Enabled:=true;
button4.Enabled:=true;
button5.Enabled:=true;

n:=strToInt(edit1.Text);
kxc:=tEdit.Create(form1); kyc:=tEdit.Create(form1);
kxc.Parent:=form1; kyc.Parent:=form1;
kxc.Left:=36; kyc.Left:=72;
kxc.Width:=36; kyc.Width:=36;
kxc.Text:='0,5';

for i:=0 to n do begin
kx[i]:=tEdit.Create(form1); ky[i]:=tEdit.Create(form1);
kx[i].Parent:=form1; ky[i].Parent:=form1;
kx[i].Top:=36+36*i; ky[i].Top:=36+36*i;
kx[i].Left:=36; ky[i].Left:=72;
kx[i].Width:=36; ky[i].Width:=36;
kx[i].Text:=intToStr(i); ky[i].Text:=intToStr(i);
end;
end;


xc is x coordinate where the corresponding y (yc) is obtained using Newton method by calling it

yc=fn(xc)

function tform1.fn(xs:real):real;
var i:integer;fs:real;
begin
fs:=0;
for i:=0 to n do begin
fs:=fs+b(i,0)*c(xs,i);
end;
fn:=fs;
end;



the fn function call the two other function. The b function, a recursive contain divided difference like this

function tform1.b(i,j:integer):real;
begin
if i=0 then b:=y[0]
else if (i-j)=1 then
b:=(y[i]-y[j])/(x[i]-x[j])
else
b:=(b(i,j+1)-b(i-1,j))/(x[i]-x[j]);
end;

and c function, a recursive function (or you could rewrite it using simple for command)

function tform1.c(xs:real;i:integer):real;
begin
if i=0 then c:=1
else c:=(xs-x[i-1])*c(xs,i-1);
end;

and finally, draw the data and the function on image1

fprocedure tform1.gambarNewton;
var i,x0,y0:integer;px,py:real;
begin
x0:=image1.Width div 2; y0:=image1.Height div 2;
image1.Canvas.Brush.Color:=clLime;
image1.Canvas.Rectangle(0,0,image1.Width,image1.Height);
image1.Canvas.Brush.Color:=clWhite;
image1.Canvas.Pen.Color:=clBlack;
image1.Canvas.MoveTo(0,y0); image1.Canvas.LineTo(image1.Width,y0);
image1.Canvas.MoveTo(x0,0); image1.Canvas.LineTo(x0,image1.Height);
for i:=-300 to 300 do begin
px:=i/skala; py:=skala*fn(px);
image1.Canvas.Pixels[x0+i,y0-round(py)]:=clGreen;
end;
for i:=0 to n do begin
px:=x0+skala*x[i]; py:=y0-skala*y[i];
image1.Canvas.Ellipse(round(px)-7,round(py)-7,round(px)+7,round(py)+7);
end;
px:=x0+skala*xc; py:=y0-skala*yc;
image1.Canvas.Brush.Color:=clred;
image1.Canvas.Ellipse(round(px)-7,round(py)-7,round(px)+7,round(py)+7);
image1.Canvas.Brush.Color:=clwhite;
end;






Monday, April 10, 2017

Short Function.


Here's my implementation of function according to The Power of 10;

"Restrict functions to a single printed page."

As bonus, I didn't use global variable if possible. So if a function or procedure need a variable from others, it have to be passed using parameter on that function.

If we look at the code below, we know that it can be rewritten using a long single procedure or function. But according The Power of Ten, a function should be as short as possible so it could be printed in a single page.

So, instead one long multiple page function, I write/break it as several short-single-printed-page functions. :)





unit Unit1;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TForm1 = class(TForm)
Edit1: TEdit;
Edit2: TEdit;
Button1: TButton;
Edit3: TEdit;
Edit4: TEdit;
procedure proses;
function konversi(a:real;c,d:char):string;
function konversiC(a:real;d:char):string;
function konversiF(a:real;d:char):string;
function konversiR(a:real;d:char):string;
function konversiK(a:real;d:char):string;
procedure Button1Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.Button1Click(Sender: TObject);
begin
proses;
end;
procedure tform1.proses;
var
a:real;
s,b:string;
c,d:char;
begin
a:=strToFloat(edit1.Text);
s:=edit2.Text;
c:=s[1];
s:=edit4.Text;
d:=s[1];
b:=konversi(a,c,d);
edit3.Text:=b;
end;
function tform1.konversi(a:real;c,d:char):string;
begin
case c of
'C':konversi:=konversiC(a,d);
'F':konversi:=konversiF(a,d)
'R':konversi:=konversiR(a,d)
'K':konversi:=konversiK(a,d)
else konversi:='error';
end;
end;
function tform1.konversiC(a:real;d:char):string;
begin
case d of
'C':konversiC:=floatToStr(a);
'F':konversiC:=floatToStr(a*9/5+32);
'R':konversiC:=floatToStr(a*4/5);
'K':konversiC:=floatToStr(a+273);
else konversiC:='Error';
end;
end;
function tform1.konversiF(a:real;d:char):string;
begin
case d of
'C':konversiF:=floatToStr((a-32)*5/9);
'F':konversiF:=floatToStr(a);
'R':konversiF:=floatToStr((a-32)*4/9);
'K':konversiF:=floatToStr((a-32)*5/9+273);
else konversiF:='Error';
end;
end;
function tform1.konversiR(a:real;d:char):string;
begin
case d of
'C':konversiR:=floatToStr(a*5/4);
'F':konversiR:=floatToStr(a*9/4+32);
'R':konversiR:=floatToStr(a);
'K':konversiR:=floatToStr(a*5/4+273);
else konversiR:='Error';
end;
end;
function tform1.konversiK(a:real;d:char):string;
begin
case d of
'C':konversiK:=floatToStr(a-273);
'F':konversiK:=floatToStr((a-273)*9/5+32);
'R':konversiK:=floatToStr((a-273)*4/5);
'K':konversiK:=floatToStr(a);
else konversiK:='Error';
end;
end;

end.


.

Another Turtle in Circle

There's always another way to solve something.

So, I have another code for "Turtle in Circle" code, :)

In the script below, I use turtle position to determine if it's still inside circle or not. If it outside circle, instead of send it to zero position, I send it to random position inside circle.

import turtle
from random import uniform
import numpy as np

turtle.shape("turtle")
#turtle.speed(1)
x = 0
y = 0
rmax=40

for i in range (1,1000):
a = uniform (-90,90) #angle
turtle.left(a)
d = uniform (-75,75) #distance
x = turtle.xcor()+d*np.cos(a*np.pi/180)
y = turtle.ycor()+d*np.sin(a*np.pi/180)
r = np.sqrt(x*x+y*y)
if r>rmax:
turtle.setx(uniform(-rmax,rmax))
turtle.sety(uniform(-rmax,rmax))
x = 0
y = 0
else:
turtle.forward(d)

turtle.exitonclick()





.

Sunday, April 9, 2017

Turtle in Circle


I use previous code and improve it so the turtle could only move at certain circle area.

import turtle
from random import uniform
import numpy as np

turtle.shape("turtle")
#turtle.speed(1)
x = 0
y = 0

for i in range (1,1000):
a = uniform (-90,90) #angle
turtle.left(a)
d = uniform (-75,75) #distance
x += d*np.cos(np.pi*a/180)
y += d*np.sin(np.pi*a/180)
r = np.sqrt(x*x+y*y)
if r>40:
turtle.setx(0)
turtle.sety(0)
x = 0
y = 0
turtle.forward(d)

turtle.exitonclick()





.



Anti MainStream.

Saat booming sepatu roda, Alfa malah sibuk berlatih skateboard, :D .


323f (5) amp (1) android (12) apple (7) arduino (18) art (1) assembler (21) astina (4) ATTiny (23) blackberry (4) camera (3) canon (2) cerita (2) computer (106) crazyness (11) debian (1) delphi (39) diary (286) flash (8) fortran (6) freebsd (6) google apps script (8) guitar (2) HTML5 (10) IFTTT (7) Instagram (7) internet (12) iOS (5) iPad (6) iPhone (5) java (1) javascript (1) keynote (2) LaTeX (6) lazarus (1) linux (29) lion (15) mac (28) macbook air (8) macbook pro (3) macOS (1) Math (3) mathematica (1) maverick (6) mazda (4) microcontroler (35) mountain lion (2) music (37) netbook (1) nugnux (6) os x (36) php (1) Physicist (29) Picture (3) programming (189) Python (109) S2 (13) software (7) Soliloquy (125) Ubuntu (5) unix (4) Video (8) wayang (3) yosemite (3)